
Constructing an Advanced Software

Tool for Planetary

Atmospheric Modeling

RICHARD M. KELLER, MICHAEL SIMS,

ESTER PODOLAK, AND CHRISTOPHER McKAY

AI RESEARCH BRANCH, MAIL STOP 244-17

NASA AMES RESEARCH CENTER

MOFFETT FIELD, CA 94035

•5 ; :=.r _,_.\: :,,!- T i_:_'!L i::!_ :_, ? L. h _ i_T ;_f_ Y h T i_;i0 5 P H _!R][C

,_:,5 / 9 1

N '-9.__"-_- .,' 5 ;4-1.._

Ames Research Center

Artificial Intelligence Research Branch

Technical Report FIA-90-8-29-01

August, 1990

To appearin Proc. 1990 International Symposium on Artificial Intelligence, Robotics and Automation in Space

Constructing an Advanced Software Tool
for Planetary Atmospheric Modeling

Richard M. Keller*, Michael H. Sims, Esther Podolak**, and Christopher P. McKay***

Information Sciences Division
NASA Ames Research Center

Mail Stop 244-17, Moffett Field, CA 94035 USA

Tel. (415) 604-3388 Fax. 604-6997
Keller@pluto.arc.nasa.gov (Intemet) MHSims (NASAMail)

Abstract - Scientific model-building can be a time-intensive and painstaking process, often involving the
development of large and complex computer programs. Despite the effort involved, scientific models cannot
easily be distributed and shared with other scientists. In general, implemented scientific models are
complex, idiosyncratic, and difficult for anyone but the original scientist/programmer to understand. We
believe that advanced software techniques can facilitate both the model-building and model-sharing
process. In this paper, we describe a prototype for a scientific modeling software tool that serves as an aid to
the scientist in developing and using models. This tool includes an interactive intelligent graphical
interface, a high-level domain-specific modeling language, a library of physics equations and experimental
datasets, and a suite of data display facilities. Our prototype has been developed in the domain of
planetary atmospheric modeling, and is being used to construct models of Titan's atmosphere.

1. Introduction and Motivation: Software

support for scientific model-building

Model-building is an integral part of all
scientific enterprise. Scientists studying a
particular phenomenon develop theories in order
to account for novel observations and to make

predictions about expected behavior. To validate
their theories, scientists conduct in vivo

experiments whenever possible. Often, however,

it is impracticable to carry out such direct
experiments due to cost or other limiting factors.
In these cases, scientists build models of the

system under study and then test their theories
against those models. Sometimes these models
take the form of hardware (i.e., some sort of

physical analog to the actual system), but often
the models are expressed in software.

The construction of scientific software models can

be a time-intensive and painstaking process.
Many scientific models are written in terms of

general-purpose numeric programming languages,
such as FORTRAN, which have not been

specially designed for the modeling task.
Implementing a model can involve writing large
and complex programs that access multiple
datasets and utilize numerous different

* Employed undercontract to Sterling Federal Systems.

**Employed under contract to Complex Systems Research.

***Theoretical Studies Branch, Space Science Division,
NASA Ames ResearchCenter.

statistical and numeric processing packages.
Development time for large scientific models
may involve many months or years of effort.

For all the time and effort it takes to develop a
model, the user community for most scientific
models is limited to one -- the scientist who

initially designed the model. This is not to say
that one scientist has no use for another's models.

On the contrary, model-sharing is highly
desirable because it gives scientists the ability to
"run experiments" and test their theories using
different models without additional

development overhead. The ability to easily
inspect, use, and modify another scientist's
models would be an extremely useful adjunct to
current model-building practice, and an effective
medium for communicating scientific ideas, as
well. Just as scientists read technical papers
describing theories, they should be able to
inspect and exercise the software models that
were used in validating those theories. Given the
benefits to model sharing, why is it practiced so
infrequently?

There are numerous technological barriers to
scientific model sharing. Some of these barriers
include:

• Lack of comprehensibility: Scientific software
models are often sparsely commented and
cryptic. Even a program that is initially well-
written and commented will become fragmented
over time.

P_el

• Wrong level of abstraction: The model's

structure is not obvious from the program code.

The scientist is forced to interpret the code and

translate low-level programming language
constructs into high-level scientific terms.

• Implicit assumptions: Often important

modeling assumptions are left implicit in the
low-level code. These assumptions cannot be

inspected or easily modified by new users.

Not surprisingly, some of these barriers are quite

similar to those cited as discouraging traditional
software sharing [1].

2. Objectives and Approach

Our primary research objective is to facilitate

scientific model-construction and model-sharing
by addressing the technological barriers

described above. Despite the fundamental nature

of scientific modeling, there is little software

support available for this important activity.

We are investigating the development of

specialized software tools to ease the modeling
process.

In particular, we believe that the following
collection of advanced software techniques can

substantially enhance the modeling process. We

have begun to integrate these techniques in a

scientific modeling software tool that serves as

an aid to the scientist in developing and using
models. The techniques include:

• Interactive graphical interface: To enhance

comprehensibility and modifiability of

models. Visual and iconic representations

help the user to rapidly grasp the content
of a model.

• High-level modeling language: To provide an
appropriate level of abstraction for

modeling and introduce natural domain

concepts that are familiar to the scientist-
user.

• Analysis facilities: To facilitate the

interpretation of experimental results

through the use of graphical plotting and

statistical techniques.

• Equation and dataset libraries: To facilitate

the sharing of standardized scientific

equations and datasets.

• Intelligent assistance: To provide guidance and

automate simple modeling steps. Artificial

Intelligence-based techniques, such as

constraint satisfaction, typed inheritance

hierarchies, and backward-chaining

P_e2

control can reduce the amount of detail that

the scientist-user needs to track.

• Assumption maintenance facility: To maintain

explicit descriptions of modeling and data

assumptions underlying a model and

interdependencies among these

assumptions.

Rather than attempting to construct a general-

purpose modeling tool, our approach is to first

focus narrowly on a particular scientific domain -

planetary atmospheric modeling -- and a

specific class of models within that domain.
Because the nature of scientific models differs

widely across different scientific disciplines, we

believe that software support can have the

greatest impact by maintaining a narrow focus.

Once we have some depth of experience in one

scientific domain, we plan to widen and

generalize our software techniques to

accommodate other modeling problems within
that domain and other similar domains. The

next section describes the planetary atmospheric

modeling domain.

3. Application to Planetary Atmospheric

Modeling

The focal point for our preliminary research has
been a model of the thermal and radiative

structure of Titan's atmosphere. (Titan is one of

Saturn's moons.) This model is implemented in a
FORTRAN program (consisting of over 5000 lines

of code) which was developed by co-author

McKay [2]. The model was designed with two

principal goals in mind: first, to be a general tool

for investigating scientific issues associated with

Titan, and second, to provide a mechanism for

generating synthetic spacecraft data to be used in

designing future instruments or in analyzing data

from existing instruments. The McKay model is in

considerable demand by planetary scientists --

both as a resource in support of ongoing Titan

research and as an aid to study and planning

activities associated with NASA's upcoming

Cassini/Huygens Probe to Titan.

Our initial research has focused on a small

portion of the overall Titan model -- the gas

composition portion. The purpose of this sub-part

of the model is to develop a profile of Titan's

atmosphere that describes the pressure,

temperature, and density of gases at various

altitudes above its surface. This problem is

underconstrained due to the shortage of empirical

data on Titan. The major source of relevant

experimental data is the Voyager I flyby of

Titan back in November 1980. As Voyager I

passed by the far side of Titan, it sent back radio

waves that passed through Titan's atmosphere
and then on to receiving stations on Earth. Due to

the gases in the atmosphere, the radio waves

were refracted slightly as they passed through
the atmosphere. The amount of refraction was
measured at different altitudes above the

surface. This refractivity data serves as a

starting point for inducing the desired

atmospheric profile in the Titan gas composition
model [3].

In brief, the atmospheric profile is determined
within the gas composition sub-model as follows

(see Figure 1). First, for each atmospheric point

to be profiled, the Voyager I refractivity data

(R) is used to compute the number-density (ND)

of the gases at that altitude. The number-density
of a mixture of gases is defined as the number of

molecules per volume of the mixture. Assuming
the identity and relative percentages of gases in

a mixture is known, the number-density can be

computed as a function of refractivity. Next,

using the molecular weight of the various gases

in that mixture, the mass-density (RHO: mass

per volume of mixture) can be computed from the

number-density. The hydrostatic law can then be
used to determine the pressure (P) from the mass-

density by essentially summing the weight of the

atmosphere above each elevation point in the
profile. Finally, the temperature (T) can be

determined from the mass-density and the

pressure by applying an equation of state, such as

the ideal gas equation. Figure 1 illustrates a

level of abstraction at which a physicist might

describe the problem, and is far more

comprehensible than the corresponding

FORTRAN code. Our goal is to construct a

graphical interface and an associated modeling
tool with which a physicist can construct a model
with this level of abstraction.

4. Prototype

The aim of our prototype is to make the Titan

model described in the previous section available

for use by a larger group of planetary scientists.
Currently, use of the Titan model is limited

because the original programmer (co-author
McKay) is the only one who can use and modify

the FORTRAN model with any degree of

facility. Our prototype permits scientists to

inspect portions of the Titan gas composition sub-

model, modify parts of the sub-model, execute

the sub-model, and perform analyses on the

results. Rather than augment the existing

FORTRAN code, our approach has been to build a

visual programming tool that enables a user to

construct models graphically using a high-level

atmospheric modeling language. The constructed
model is automatically compiled into executable

code by the system. The terms in the atmospheric

modeling language involve domain concepts that

are familiar to the scientist, including physical
variables ("saturation point"), physics equations

("ideal gas law"), and experimental datasets

("Voyager refractivity data"). By interacting

with a graphical interface, users essentially

"program" using this more natural high-level

modeling language.

For the purposes of our initial prototype, we

have conceptualized model-building as a process

of linking uncomputed physical variables to

computed variables using computational

transformations. For example, the process of

linking the input Voyager I refractivity data to
the output ideal gas temperature is accomplished

by the sequence of transformations illustrated in

Figure 1. Conceptually, each transformation

takes as input a set of variables and produces a

single variable as output. Physics equations and

subroutines are two kinds of computational

transformations supported in the current system.

Physics forms the basis for atmospheric

modeling, so the use of physics equations is
natural in this context. The introduction of

subroutines is motivated by the fact that in

building models, scientists often makes use of

program code that has been developed

elsewhere. Examples range from standard

numeric integration and data interpolation

packages to complex scientific models developed

by other scientists. The details of these imported

Refractivity data

R

refractivity/
number-density

relation

Number density Mass density Pressure Temperature

ND RHO P

number-density/ hydrostatic ideal
mass-density law gas

relation law

Figure 1: Determining the atmospheric profile

Page 3

subroutines are assumed to be outside the scope
and interest of the scientist-user, but can be

incorporated into their models as 'black boxes'.

In our prototype, the process of linking variables

using transformations is accomplished via a
simple backchaining procedure. In this

backchaining process, the user first selects a

target physical variable they wish to calculate.

Then the system presents the user with a set of

transformations that can be used to compute the
desired variable. The user selects one of these

transformations, and the system checks to see

whether all the input variables required by this

transformation have already been calculated. If
so, the transformation fires and the desired

output variable is computed; if not, the
backchaining process recurses for each of the

uncomputed variables. During this process, the

graphical interface displays a dependency-tree

visualization of the current model as it is being
built. This visualization is similiar to Figure 1,

but in general depicts a more complex network of

variables and transformations. The history of
user modeling steps is recorded and maintained

by the system, and can be displayed at any time.

The prototype features a Macintosh-like

interface with pull-down menus and windows.
The interface enables the user to visualize the

model and its associated variables in a variety of

formats, including plotted graphs and data tables

for displaying computed variables. The interface

provides various functions to manage the models

stored in a scientist's workspace. For example,
the user can switch the current focus of the model-

building activity to a different model and/or

workspace, and can retrieve old models, initiate

new models, or delete existing models. Also, the

interface provides a facility for applying user-

defined tests of model viability to the current

model under development. For atmospheric

modeling, one such test is a test for atmospheric

stability. If the temperature gradient predicted

by a model is too steep, the atmosphere will be
inherently unstable -- and this violates normal

expectations. So the model testing facility
provides the scientist with valuable feedback on
whether the current model needs further
refinement.

5. Status

To date, we have focused on model construction

rather than model modification, although the

tool supports simple types of changes to existing
models. The modeling tool can be used to construct

three variants of the basic gas composition

model described in Section 3. This prototype has

P_e4

been implemented in LISP using InteUicorp's

object-oriented knowledge representation tool

KEE running on a Symbolics workstation. This
development environment currently meets our

needs for rapid prototyping. We envision

eventual movement to a more suitable delivery

platform, such as a Macintosh.

An atmospheric scientist brings a variety of

different kinds of knowledge to bear in

approaching the modeling task. This includes

both domain knowledge, such as knowledge about

physical variables, physics equations, and the

structure of atmospheres, and modeling

knowledge, such as various strategies and

heuristics for atmospheric modeling, and various
constraints and assumptions pertaining to the

modeling process. We believe that representing

knowledge of this type is the key to developing a

useful modeling assistant to a human scientist.

As yet, we have only represented knowledge

about physical variables and physics equations

in our prototype. We are currently focusing on

representing domain objects (e.g., 'gas-parcels',

'gases', "atmosphere-layers') and their

interrelationships, and on representing scientific

modeling assumptions. Our intent is to develop
the current prototype into sophisticated

modeling tool that enables active

experimentation and sharing of models by

atmospheric scientists. Further details on the

current prototype and on our future plans can be
found in [4].

6. References

[1] T.E. Cheatham, Jr., "Reusability Through Program
Transformations", IEEE Transactions on Software
Engineering, 10:5, pp. 589-594, September 1984.

[2] C.P. McKay, J.B. Pollack, and R. Court[n, "The
Thermal Structure of Titan's Atmosphere", Icarus,
80, 23-53, 1989.

[3] G.F. Lindal, G.E. Wood, H.B. Hotz, D.N. Sweetnam,
V.R. Eshleman, and G.L Tyler, "The Atmosphere of
Titan: An analysis of the Voyager I radio
occultation measurements", Icarus, 53, 348-363,
1983.

[4] R.M. Keller, M.H. Sims, E. Podolak, C.P. McKay, and
D.E. Thompson, "Proposal for Constructing an
Advanced Software Tool for Planetary Atmospheric
Modeling", Artificial Intelligence Research Branch
Report #RIA-90-03-20-1, NASA Ames Research
Center, March 1990.

REPORT DOCUMENTATION PAGE j OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data source'S,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments rec_arding this burden estimate or any other aspect of t_is

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson

Davis Highway, Suite _204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704°0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) J Dates_REPORTattachedDATE 3. REPORT TYPE AND DATES COVERED

I
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Titles/Authors - Attached

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS{ES)

Code FIA - Artificial Intelligence Research Branch

Information Sciences Division

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Nasa/Ames Research Center

Moffett Field, CA. 94035-1000

"_11. SUPPLEMENTARY NOTES

8. PERFORMING ORGANIZATION
REPORT NUMBER

Attached

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Available for Public

13. ABSTRACT (Maximum 200 words)

Abstracts ATTACHED

D is tr ibut ion

B cH CHIEF

12b. DISTRIBUTION CODE

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION 19.
OF THIS PAGE

SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z3g-18

298-_02

